Cloud native EDA tools & pre-optimized hardware platforms
Definition
Reinforcement Learning (RL) is the science of decision making. It is about learning the optimal behavior in an environment to obtain maximum reward. This optimal behavior is learned through interactions with the environment and observations of how it responds, similar to children exploring the world around them and learning the actions that help them achieve a goal.
In the absence of a supervisor, the learner must independently discover the sequence of actions that maximize the reward. This discovery process is akin to a trial-and-error search. The quality of actions is measured by not just the immediate reward they return, but also the delayed reward they might fetch. As it can learn the actions that result in eventual success in an unseen environment without the help of a supervisor, reinforcement learning is a very powerful algorithm.